МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Технологического и холодильного оборудования

Методические указания к самостоятельному изучению дисциплины «Теоретические основы криологии» для обучающихся по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения»

профиля (специализации):

«Холодильная техника и технология»

Мурманск

2020

Методические указания для самостоятельного изучения дисциплины «Теоретические основы криологии» рассмотрены и одобрены на заседании кафедры-разработчика *Технологического и холодильного оборудования*

«23» июня 2020 протокол № 8.

дата

Составитель — Никонова Антонина Сергеевна, к.т.н., доцент кафедры технологического и холодильного оборудования.

Рецензент – Похольченко Вячеслав Александрович, к.т.н., доцент, заведующий кафедрой технологического и холодильного оборудования.

ОБЩИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Методические указания для самостоятельного изучения дисциплины «Теоретические основы криологии» составлены на основе ФГОС ВО по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения», утвержденного приказом Минобразования и науки РФ 12.03.2015 г, № 198 и предназначены для обучающихся по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения», профиль «Холодильная техника и технология».

Цель дисциплины - является подготовка обучающегося в соответствии с квалификационной характеристикой бакалавра и рабочим учебным планом направления 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения», что предполагает освоение обучаемыми теоретических знаний в области криологии.

Задачи дисциплины:

- 1) ознакомить студентов с кругом практических задач холодильной и криогенной техники; принципами получения низких температур в различных диапазонах (умеренно низких, криогенных, сверхнизких); показать особенности применения принципов термодинамики к анализу и расчету рабочих процессов в низкотемпературных системах; способы определения степени термодинамического совершенства низкотемпературных установок, основы энтропийного (эксергетического анализа); методы составления энергетических и энтропийных балансов машин, аппаратов и установок; изучить рабочие процессы, сопровождающиеся понижением температуры; холодопроизводящие И процессы метод определения полной холодопроизводительности цикла; способы определения свойств рабочих веществ (в том числе смесей) в различных состояниях и в условиях фазового равновесия.
- 2) формирование навыков самостоятельно приобретать и применять полученные знания.

В результате изучения дисциплины бакалавр должен:

Обучающийся должен знать: предмет и задачи основ криологии, перспективы развития криогенных процессов, связанные с ними научные проблемы в основных направлениях криологии; классификацию криогенных циклов; реальные газы и конденсированное состояние; эффект Джоуля-Томсона; ступени охлаждения криогенных систем; основные циклы низкотемпературных установок; процессы разделения газовых смесей; конструкцию и принципы работы теплообменных аппаратов криогенных

установок;

Обучающийся должен **уметь** пользоваться термодинамическим диаграммами; рассчитывать основные циклы криогенных систем; выполнять основные расчеты процессов, связанных с производством холода.

Обучающийся должен **владеть** основными методами практического применения результатов развития криогенных процессов; способностью формулировать обобщающие выводы и оценки.

Содержание разделов дисциплины:

Базовые термодинамические понятия и законы. Термодинамические диаграммы и процессы криогенных систем. Равновесные состояния и фазовые переходы чистых веществ. Основные процессы для получения низких температур. Процессы внешнего и внутреннего охлаждения. Процессы, сопровождающиеся понижением температуры. Циклы холодильных систем и низкотемпературных установок. Идеальные циклы криогенных систем. Криогенное термостатирование. Реальные циклы криогенных систем. Классификация криогенных циклов. Основные циклы низкотемпературных установок.

Реализуемые компетенции: ПК-1; ПК-2; ПК-5.

Формы отчетности:

Очная форма обучения: Семестр 6 – зачет, РГР.

Заочная форма обучения: Курс4 – зачет.

Требования к уровню подготовки обучающегося в рамках данной дисциплины

Процесс изучения дисциплины «**Теоретические основы криологии**» направлен на формирование компетенций в соответствии с ФГОС ВО по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения», представленных в таблице 1.

Таблица 1 – Компетенции, формируемые дисциплиной «Теоретические основы криологии»

№	Код	Содержание компетенции
п/п	компетенции	
1.	ПК-1	Способность выявлять сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физикоматематический аппарат
2.	ПК-2	Готовность применять физико-математический аппарат, теоретические, расчетные и экспериментальные методы исследований, методы математического и компьютерного моделирования в процессе профессиональной деятельности
3.	ПК-5	Готовность составлять описания выполненных расчетно-экспериментальных работ и разрабатываемых проектов, выполнять обработку и анализ полученных результатов, подготовку данных для составления отчетов и презентаций, написания докладов, статей и другой научно-технической документации

4. Планируемые результаты обучения по дисциплине «Теоретические основы криологии»

Результаты формирования компетенций и планируемые результаты обучения представлены в таблице 2.

Таблица 2

No	Код	Компоненты	Результаты обучения
Π/Π	компете	компетенции,	, , ,
	нции	степень их	
	·	реализации	
1	ПК-1	Компоненты	Знать: перспективы развития криогенных процессов, связанные с ними научные
		компетенции	проблемы в основных направлениях криологии; конструкцию и принципы работы
		частично	теплообменных аппаратов криогенных установок.
		соотносятся с	Уметь: выполнять основные расчеты процессов, связанных с производством холода.
		содержанием	Обладать: основными методами практического применения результатов развития
		дисциплины, и	криогенных процессов; способностью формулировать обобщающие выводы и оценки.
		компетенция	
		реализуется	
		полностью	
2	ПК-2	Компоненты	Знать: конструкцию и принципы работы теплообменных аппаратов криогенных
		компетенции	установок.
		частично	Уметь: рассчитывать основные циклы криогенных систем; выполнять основные расчеты
		соотносятся с	процессов, связанных с производством холода.
		содержанием	Обладать: способностью формулировать обобщающие выводы и оценки.
		дисциплины, и	
		компетенция	
		реализуется	
		полностью	
3	ПК-5	Компоненты	Знать: предмет и задачи основ криологии, перспективы развития криогенных процессов,
		компетенции	связанные с ними научные проблемы в основных направлениях криологии.
		частично	Уметь: рассчитывать основные циклы криогенных систем; выполнять основные расчеты
		соотносятся с	процессов, связанных с производством холода.
		содержанием	Обладать: основными методами практического применения результатов развития
		дисциплины, и	криогенных процессов; способностью формулировать обобщающие выводы и оценки.
		компетенция	
		реализуется	
		полностью	

Целью настоящих **методических указаний** являются рекомендации, которыми обучающийся может воспользоваться при подготовке к сдаче форм контроля по дисциплине «**Теоретические основы криологии**», при подготовке к зачету и для самостоятельного углубления знаний по данной дисциплине.

Введение

Дисциплина «**Теоретические основы криологии**» состоит из трех модулей. Обучающийся должен изучить теоретические сведения по темам модуля, выполнить лабораторные работы, расчетно-графические работы для усвоения теории и завершить изучение дисциплины сдачей зачета.

Для изучения дисциплины в составе методической литературы обучающимся предлагается изучить литературные источники из списка. Начать изучение дисциплины следует с методических указаний для самостоятельного изучения дисциплины.

Содержание разделов дисциплины (модуля), виды работы представлены в таблипе 3.

Таблица 3

Содержание разделов (модулей),			Количество часов, выделяемых на виды учебной работы по формам обучения									
(модулеи), тем дисциплины	Очная				Заочная							
	Л	ЛР	П Р	СР	Л	ЛР	П Р	CP				
Модуль 1. Базовые термодинамические понятия и законы. Тема 1. История развития криологии (Майкл Фарадей, Вальтер Нернст, Джосеф Пристли, Антуан Лавуазье, Луи Кальете и др.). Применение криогенных температур. Базовые термодинамические понятия и законы. Применение первого и второго закона термодинамики. Принцип сохранения массы, материальный баланс. Принцип сохранения энергии. Энергетический баланс.	2	0	0	1 4	0,3	0	0	19				
<i>Тема 2.</i> Термодинамические диаграммы и процессы криогенных систем. Равновесные состояния и фазовые переходы чистых веществ.	2	0	0	1 4	0,3	0	0	19				
Модуль 2. <i>Тема 3</i> .Основные процессы для получения низких температур. Процессы внешнего и внутреннего охлаждения.	2	0	0	1 4	0,3	0	0	19				
<i>Тема 4</i> . Процессы, сопровождающиеся понижением температуры.	2	0	0	1 4	0,3	0	0	19				
Модуль 3. Циклы холодильных систем и низкотемпературных установок. Тема 5. Идеальные циклы криогенных систем. Криогенное термостатирование.	2	1 4	0	1 4	0,3	0	0	19				
Тема 6. Реальные циклы криогенных систем. Классификация криогенных циклов.	2	6		1 4	0,2	4		19				
Тема 7. Основные циклы низкотемпературных установок.	2	8	0	1 8	0,	0	0	20				

Подготовка к промежуточной аттестации								4
Итого:	14	28	0	102	2	4	0	134

Таблица 4. - Перечень лабораторных работ

№	Темы лабораторных работ		Количество часов				
п\п	Temas nucepurepriam pueer	Очная	Заочная				
1	Изучение процесса захолаживания трубопроводов для транспортировки криожидкостей	8					
2	Тепловой расчет теоретического цикла одноступенчатой компрессионной холодильной машины	4					
3	Тепловой расчет реального цикла одноступенчатой компрессионной холодильной машины, работающей с переохлаждением	4					
4	Обобщенный график сжимаемости газов	6	4				
5	Изучение системы ожижения гелия Симона	6					
	Итого:	28	4				

Перечень практических работ

Не предусмотрено.

Перечень примерных тем курсовой работы /проекта

Не предусмотрены.

РГР. Основные циклы низкотемпературных установок.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Жистин, Е.А. Основы проведения научных исследований [Электронный ресурс]: учебно-методическое пособие / Е.А. Жистин, В.А. Авроров. Электрон. дан. Пенза: ПензГТУ, 2010. 28 с. Режим доступа: https://e.lanbook.com/book/62642. Загл. с экрана.
- 2. Шкляр, М.Ф. Основы научных исследований [Электронный ресурс]: учебное пособие / М.Ф. Шкляр. Электрон. дан. Москва: Дашков и К, 2017. 208 с. Режим доступа: https://e.lanbook.com/book/93545. Загл. с экрана.
- 3. Маюрникова, Л.А. Основы научных исследований в научнотехнической сфере [Электронный ресурс] : учебное пособие / Л.А. Маюрникова, С.В. Новоселов. Электрон. дан. Кемерово : КемГУ, 2009. 123 с. Режим доступа: https://e.lanbook.com/book/4842. Загл. с экрана.
- 4. Сафин, Р.Г. Основы научных исследований. Организация и планирование эксперимента [Электронный ресурс] : учебное пособие / Р.Г. Сафин, А.И. Иванов, Н.Ф. Тимербаев. Электрон. дан. Казань : КНИТУ, 2013. 156 с. Режим доступа: https://e.lanbook.com/book/73344. Загл. с экрана.
- 5. Прокофьев, Г.Ф. Основы прикладных научных исследований при создании новой техники [Электронный ресурс] : монография / Г.Ф. Прокофьев, Н.Ю. Микловцик. Электрон. дан. Архангельск : САФУ, 2014. 171 с. Режим доступа: https://e.lanbook.com/book/96541. Загл. с экрана.
- 6. Рыжков, И.Б. Основы научных исследований и изобретательства [Электронный ресурс]: учебное пособие / И.Б. Рыжков. Электрон. дан. Санкт-Петербург : Лань, 2013. 224 с. Режим доступа: https://e.lanbook.com/book/30202. Загл. с экрана.
- 7. Сагдеев, Д.И. Основы научных исследований, организация и планирование эксперимента [Электронный ресурс] : учебное пособие / Д.И. Сагдеев. Электрон. дан. Казань : КНИТУ, 2016. 324 с. Режим доступа: https://e.lanbook.com/book/101880. Загл. с экрана.
- 8. Патентоведение и защита интеллектуальной собственности [Электронный ресурс]: учебное пособие / В.Л. Ткалич [и др.]. Электрон. дан. Санкт-Петербург: НИУ ИТМО, 2015. 171 с. Режим доступа: https://e.lanbook.com/book/91532. Загл. с экрана.
- 9. Информационные аспекты интеллектуальной собственности [Электронный ресурс] : учебное пособие / О.В. Ахрамеева [и др.]. Электрон. дан. Ставрополь : СтГАУ, 2015. 32 с. Режим доступа: https://e.lanbook.com/book/82217. Загл. с экрана.

СОДЕРЖАНИЕ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИЗУЧЕНИЮ ТЕМ ДИСЦИПЛИНЫ

Модуль 1

Базовые термодинамические понятия и законы.

Тема 1. История развития криологии

Применение криогенных температур. Базовые термодинамические понятия и законы. Применение первого и второго закона термодинамики. Принцип сохранения массы, материальный баланс. Принцип сохранения энергии. Энергетический баланс.

Тема 2. Термодинамические диаграммы и процессы криогенных систем Равновесные состояния и фазовые переходы чистых веществ.

Вопросы для самоконтроля:

- 1. Какую температурную область охватывает криогенная техника?
- 2. Что такое контрольная система? Назовите параметры и функции состояния.
- 2. Сформулируйте принцип сохранения массы и принцип сохранения энергии.
 - 4. Сформулируйте принцип возрастания энтропии.
- 5. Сформулируйте принцип недостижимости нуля термодинамической температуры.
 - 6. Дайте формулировку правила фаз Гиббса.
- 7. Что является низкокипящим и высококипящим компонентом в смеси кислород-азот?
 - 8. Что такое азеатропная бинарная смесь?

Модуль 2

Научные исследования в технике объектов производства и применения холода

Тема 3. Основные процессы для получения низких температур.

Процессы внешнего и внутреннего охлаждения.

Тема 4. Процессы, сопровождающиеся понижением температуры.

Вопросы для самоконтроля:

- 1. Кратко опишите основные методы внешнего и внутреннего охлаждения.
- 2. Какие процессы для получения низких температур являются холодопроизводящими, а какие нехолодопроизводящими?
- 3. Дайте определение процессу дросселирования. Поясните, что такое интегральный эффект дросселирования.
 - 4. Охарактеризуйте процесс расширения газа в детандерах.
- 5. Охарактеризуйте процесс выхлопа и поясните сферу его применения в криогенной технике.
 - 6. Как устроена вихревая труба Ранка-Хилша?
- 7. Как применяется эффект адиабатного размагничивания в криогенной технике?
- 8. Какие процессы охлаждения, основанные на использования свойств изотопов гелия ⁴He и ³He Вы можете назвать?
- 9. Дайте определение дифференциального эффекта Джоуля-Томсона, его физическая сущность.

После изучения теоретического материала необходимо выполнить практическую работу № 1.

Модуль 3

Циклы холодильных систем и низкотемпературных установок

- *Тема 5. Идеальные циклы криогенных систем. Криогенное термостатирование*
- Тема 6. Реальные циклы криогенных систем. Классификация криогенных циклов

Тема 7. Основные циклы низкотемпературных установок.

Вопросы для самоконтроля:

- 1. По каким признакам характеризуются криогенные циклы?
 - 2. Что характеризует коэффициент ожижения?
- 3. Как определяется холодильный коэффициент криогенного цикла?

- 4. Что такое ступень охлаждения криогенного цикла?
- 5. Как определяются затраты работы в криогенной системе?
- 6. Что такое термодинамический КПД и как он определяется?
- 7. Как определяются основные характеристики цикла Клода?

После изучения теоретического материала необходимо выполнить, защитить лабораторные работы и РГР.